土体的力学能?土的三个力学性质

精选笔记 bchgfjyf56547 2024-05-10 00:58 3 0

一、土的工程特性有哪些

1.土的物理性质:除土的粒径级配外,土中各个组成部分(固相、液相、气相)之间的比例,将影响到土的物理性质,如单位体积重γ,含水量w,孔隙比e,饱和度sr和孔隙度n等。

2.土的压缩和固结性质:土在荷载作用下其体积将发生压缩,测定土的压缩特性可分析工程建筑物的地基沉降和土体变形。饱和粘土的压缩时间决定于土中孔隙水排出的快慢。逐渐完成土压缩的过程,即土中孔隙水受压而排出土体之外,同时导致孔隙压力消失的过程称土的固结或渗压。

3.土的流变性质:土工建筑物的变形和稳定是时间的函数。

4.土的强度性质:通常指土体抵抗剪切破坏的能力,它是土基承载力、土压和边坡稳定计算中的重要指标之一。它和土的类型、密度、含水量和受力条件等因素有关。

5.土的压实性质:对土进行人工压实可提高强度、降低压缩性和渗透性。土的压实程度与压实功能、压实方法和含水量有关。

6.土的动力性质:土在岩爆、动力基础或地震等动力作用下的变形和强度特性与静荷载下有明显不同。土的动力性质主要指模量、阻尼、振动压密、动强度等,它与应变幅度的大小有关。

扩展资料:

对土进行人工压实可提高强度、降低压缩性和渗透性。土的压实程度与压实功能、压实方法和含水量有关。当压实方法和功能不变时,土的干容重随含水量的增加而增加,达到最大值后,再增加含水量,其干容重将逐渐下降。

对应于最大干容重时的含水量称最佳含水量。压实功能不增大而仅增加压实次数或碾压次数所能提高土的压实度有一定限度,超过该限度再增加压实或碾压次数则无效果。填筑土堤,在最佳含水量附近可用最小的功能达到最大的干容重,因而要在室内通过压实试验确定填料的最佳含水量和最大干容重(见路基填土压实)。

但压实的方法也影响压实效果,对非粘性土,振动捣实的效果优于碾压;对粘土则反之。研究土的压实性能,可选择最合适的压实机具。为改善土的压实性能,可铺撒少量添加剂。中国古代已盛行掺加生石灰来改善土的压实性能。此外,人工控制填料的级配,也可达到改善压实性能的目的。

土的变形和强度是土的最重要的工程性质。60年代以前,在工程上通常分别确定土的变形和强度指标,不考虑强度与变形间的相互影响。因为土的应力-应变关系是非线性的并具有弹塑性、甚至粘弹塑性特征,而当时的计算技术,尚无法进行分析。

二、土的三个力学性质

流体在土体孔隙中的流动特性。它是土的主要力学性质之一。土渗透性是的重要研究内容,这是因为:①土木工程、水文地质、农业、水利、环境保护等领域的许多课题都与土的渗透性密切相关;②土的三个主要力学性质,即、变形和渗透性之间,有密切的相互关系,使渗透性的研究已不限于渗流问题本身;③土的渗透性同土的其他物理性质常数相比,其变化范围要大得多,且具有高度的不均匀和各向异性性质。

土的渗透性一般按土的渗透系数分类,如表1。

土力学中所涉及的大多数对象,都适用于。粗粒料,如堆石体等,密实粘土或可以自由流动的细颗粒土,可能越出达西定律适用范围。

土渗透系数的测定方法土的渗透系数(即渗透性指数)的测定方法很多,可归纳为直接法和间接法两类:直接法包括常水头法和变水头法试验,前者适用于渗透性较大的土,后者适用于渗透性较小的土;间接法包括根据固结试验成果计算和根据颗粒大小分布计算,前者适用于粘性土,后者适用于无粘性土。试验方法又可分为实验室测定和现场测定两类。各种试验方法的适用范围见表2。

影响渗透性的因素影响砂性土渗透性的主要因素为渗透流体和土的颗粒大小、形状、级配以及密度。渗透流体的影响主要是粘滞度,而粘滞度又受温度影响。温度越高,粘滞度越低,渗流速度越大。土颗粒的影响是颗粒越细,渗透性越低;级配良好的土,因细颗粒充填大颗粒的孔隙,减小孔隙尺寸,从而降低渗透性。土的密度增加,孔隙减小,渗透性也会降低。影响粘性土的渗透性的主要因素为颗粒的矿物成分、形状和结构(孔隙大小和分布),以及土-水-电解质体系的相互作用。粘土颗粒的形状为扁平的,有定向排列作用,因此渗透性具有显著的各向异性性质。渗透性的毛管模型表明,渗透流速与孔隙直径平方成正比,而单位流量与孔隙直径的四次方成正比。孔隙率相同的粘性土,粒团间大空隙占高比例的结构的渗透性,比均匀孔隙尺寸的结构的渗透性大得多,粘性土的微观结构和宏观结构对渗透性影响很大,因此,实险室内的测定结果并不能反映实际的土体情况。层状粘土水平方向的渗透性往往远大于垂直方向;而黄土和黄土状土中,由于垂直大孔隙发育,其中的垂直方向的渗透性大于水平方向;裂缝粘土由于存在裂缝网络,所以渗透系数接近于粗砂,且具有严格的方向性。研究实际土体的渗透性时,必须注意它的特殊规律。

三、土体力学分析理论

目前进行土体力学分析时,一般都采用连续介质力学方法,多数情况下这是对的。可是在有一些情况下就不对,如在边坡和地下洞室中,常常见到块体塌方和黄土直立边坡崩塌破坏,这就不能用连续介质力学模型能处理的。它们是属于块裂介质力学,因此在进行土体力学分析时必须根据土体结构和土体赋存环境条件分析其力学介质,结合土体工程特点,给出合适的力学模型进行分析才能取得符合实际结果,不能千篇一律地都采用连续介质力学方法进行分析。根据土体结构及土体在环境应力改变时,其力学作用方式和规律类型的不同,可将土体划分为若干土体力学介质力质。根据作者的经验和认识,目前可将土体划分为三种力学介质:①连续介质;②楔形体块裂介质;③柱状体块裂介质。划分条件及其力学作用规律示于表4-3,这是土体力学分析的基本依据。

表4-3土体力学介质划分

1.土体地基工程变形分析方法

地基工程变形是土力学讨论十分深入的一个问题。一般来说,地基变形可用下面方法估算。这个方法不论对均质土体或者是不均质土体地基都适用,这个方法称为分层总合法。具体方法如下:

(1)将变形土体分成适当数目的水平层,对多层结构土体来说,可对应土层界面及应力变化点来分层(图4-8)。

(2)计算每一水平层的有效附加应力。为实用起见,每层值可取在该层中心深度处。

(3)计算每一水平层的附加垂直应力平均值。如果每层厚度与地基宽比较起来很小的话,Δσz的平均值可以取分层的中心深度应力值。因为应力分布与土体特性无关,故均质土体和多层土体内应力计算可用同样方法。

图4-8固结沉降计算草图

(4)计算由于附加垂直应力引起的每一水平层厚度的压缩量ΔH:

地质工程学原理

地质工程学原理

(5)基础下任一深度处沉降变形一等于这一点以上各水平层沉降变量为之和,即

地质工程学原理

这个方法把不均匀性影响考虑进去了,是目前估算地基工程变形比较通用的方法。

2.土体边坡工程稳定性分析方法

目前土体边坡稳定性分析方法有许多种,最常用的是圆弧滑动面法。1958~1960年,著者在西北黄土区进行渠道地质工程建设研究过程中,曾对西北黄土边坡力学问题进行过一系列的调查研究,收集了大量的边坡破坏资料。对所收集的资料进行分析后得到了一个重要认识,即西北黄土边坡产生滑坡的力学过程是:上部土体塌落,边坡部分土体受挤压而产生滑落。这一过程的力学机理可用图4-9来说明,上部为塌落应力区,下部为滑落应力区,中间为过渡区。塌落区内应力σ1方向大致与地面垂直,滑落区内应力σ1方向大致与边坡面平行。根据土体平衡理论,塌落应力区破裂面与σ1方向成45-ψ/2角,ψ为抗剪角;滑落应力区破裂面与σ1成45-ψ/2角,在边坡情况下则与边坡面成45-ψ/2角;过渡区为共轭破裂面交角,即(45-ψ/2)+(45-ψ/2)=90-ψ。据此可以绘制出土体边坡理论破裂面轮廓。在理论上,土体内理论破裂面不是一条,而是一组(图4-10)。当土体某一个或几个理论破裂面失稳时便产生滑坡,边坡产生破坏。图4-11是这个理论的一个例证。该边坡内同时有三个破裂面达到破坏条件,因此产生了三个台阶状破坏。由此可知,在进行边坡稳定性分析时,不能仅核算通过坡脚的理论破裂而产生边坡破坏可能性问题,而且应该对如图4-10所示的各个理论破裂面破坏可能性进行核算,找出最危险或者说稳定性最低的破裂面,给出稳定性系数,评价边坡稳定性。下面具体谈一下理论破裂面图解法绘制方法。如图4-12所示:

图4-9边坡土体滑坡作用的力学机理草图

图4-10黄土边坡的理论破裂面组合

图4-11-宝鸡瞿家台黄土边坡的破坏(坡高18m)

图4-12宝鸡瞿家台黄土边坡稳定性核算结果

(1)按比例作出边坡几何外形AOD。

(2)利用抗剪试验结果,求出不同深度处抗剪角,注于高程坐标尺上,抗剪角ψ既可以利用公式

地质工程学原理

计算,亦可以用图解法求得。

(3)利用高度坐标尺上注的抗剪角ψ,分段作理论破裂面AB,OC及DC,OB、AB段理论破裂面与边坡面成45-ψ/2,OC,DC段理论破裂面与垂直方向成45-ψ/2角。将BC间划分为若干等份并与O点联线,由B点向上依次作90-ψ包线,交OC线于C点再由C点向上作DC线。至此即完成一条理论破裂面曲线。

图4-12为瞿家台黄土边坡稳定性核算绘制的理论破裂面,绘制的理论破裂面与图4-11所示的实测结果基本一致。绘制的理论破裂面上部为90°,迅速转变为80°,中部为65°,下部为45°;图4-11所示的实测剖面的上部为80°~90°,中部为65°,下部为45°。显然,上述方法是可信的。有了上述的理论破裂面,就可以利用图解法或代数法求各个理论破裂面的稳定性,核算边坡稳定性。上面介绍的是完整结构土体边坡稳定性分析方法。对完整土体来说这个方法是可信的,当土体内发育有软弱层面或节理面的情况下就不行了。常见的受软弱层面和节理面控制下的破坏有如下两种情况:

(1)如图4-13a所示的受软弱层面和节理面控制下破坏;

(2)如图4-13b所示受垂直节理或裂缝控制下的塌落。

图4-13破坏力学示意图

这两种边坡破坏类型不仅见于黄土区,而在许多黏性土地区也常见到。受构造节理和软弱层面控制产生的破坏系沿弱面下滑。它完全符合库仑定律,可以很简单地利用斜面滑动极限平衡原理分析边坡稳定性。问题在于在野外就要鉴别出这种地质模型。有了地质模型,就可以很容易转化为力学模型,力学计算是很简单的,可用公式(4 34)进行。

图4-13b所示的垂直裂缝控制下的边坡塌落条件,可以通过坡脚土体压致拉裂破坏判据来分析其稳定性,即

地质工程学原理

式中:σc为土体单轴抗压强度;γi,hi为各分层土体重度及分层厚度。

土体边坡稳定性分析的关键是搞清地质模型,合理的抽象出力学模型,选定合理的力学参数,计算工作并不复杂。而目前一种偏向是计算理论研究得很深,选用的力学模型和力学参数并不符合土体的地质实际,所取得的结果常常不符合实际。

3.土体中洞室稳定性分析方法

土体中修建地下洞室,如隧道、土库等稳定性问题很早就进行过研究。这些研究出发点都是以洞顶塌落土体作为支护的外载,从而形成了地下工程建筑中的荷载支护体系的观念。好像地下工程建筑中的主要土体力学问题,就是寻求给出洞顶土体塌落高度。因此,很多人都在研究洞顶土体塌落高度计算公式。这些研究结果中最有名的要算普氏塌落拱理论,它曾控制达半个世纪之久。现将普氏理论主要内容介绍如下。

图4-14普氏塌落拱力学模型

普氏塌落拱模型如图4-14所示,他的理论的基本点如下:

(1)普氏定义土体抗剪角为土体强度系数,通常称为普氏系数,即

f=tanψ=tanφ+Cσn(4-39)

(2)设洞室宽度为2b1,洞室高度为h,塌落拱宽度为2b2,支持拱脚的土体与洞壁成45°-角,则塌落拱半宽为b2:

地质工程学原理

(3)塌落拱力学平衡条件为

地质工程学原理

式中:T为水平反力;F为附加抗剪力。

地质工程学原理

(4)当时x=b2时y=hg,则式(4-41)变为

地质工程学原理

将上列结果代入式(4-43)得

地质工程学原理

(5)对hg取极值得

地质工程学原理

(6)由式(4-47)得知,任一点土压力为

地质工程学原理

而最大土压力为

地质工程学原理

在地下工程设计时,则取σvmax作为土压力,设计衬砌厚度。

这个理论有什么优缺点?在地下工程设计中可否应用?著者认为,首先应该肯定一下,这个理论有可取之处。因为在土体中修建地下洞室,不管是人工的,还是自然的,其稳定的洞形的洞顶都是呈拱形。这就为塌落拱理论提供了实际依据。这证明在地下洞室稳定性核算时,用普氏理论是可行的,但是普氏理论在岩体力学中的应用是不符合实际的。另外,仅有这一点还是不够的。地下洞室埋深较大时,在施工过程中常常出现有流动变形,即不停止的变形。这是为什么,普氏理论就回答不了这个问题。这个问题与土体中应力有关,下面讨论一下这个问题。

应力极限平衡理论如图4-15所示,P0为土体中垂直应力,λP0为土体中水平应力,地下洞室周围土体内应力分布遵循下列规律:

图4-15在环境应力作用下隧洞周围土体内应力分布计算草图

地质工程学原理

土体稳定性最低部位位于洞壁处,即r=a处。如此,求得洞壁土体内应力为

地质工程学原理

当θ=90°时有极值,则

地质工程学原理

土体内部变形破坏基本上处于塑性状态,其破坏判据为

地质工程学原理

洞壁处σ1=σt,σ3=σr=0,如此,极限平衡条件为

地质工程学原理

即当实际地应力大于P0时将出现破坏和流动变形。如果P0=γh,则洞壁不产生破坏的最大深度为

地质工程学原理

上述表明,地下洞室稳定性受两个条件控制:①受塌落拱高度形成的土压力控制;②受洞壁土体极限条件控制。第一个条件可用普氏理论计算,第二个条件可用上面推导的极限深度公式估算。

上面讨论的是完整土体中地下洞室建筑问题。当土体内发育有软弱层面和构造节理时,深埋地下的土体开挖暴露风化后,洞壁土体将沿软弱层面和节理面产生塌落(图4-16),在这种情况下仅用上面方法分析洞室稳定性是不够的。因为在未开挖前土体处于潮湿状态下,节理面不起作用,可作为连续介质看待,可利用上述理论分析洞室稳定性;如果土体失水处于干硬状态,节理面将起作用,这种情况下,可利用岩体结构力学中块体介质力学理论和方法分析。土体力学有时也受结构控制,这一点在实际工作中应该重视。

图4-16腰岘河隧道DK613+350下导洞开挖面素描图(据钟世航,1984)

四、评价土体力学指标需要哪些参数

评价土体力学指标需要的参数有压缩系数、压缩指数、压缩模量、变形模量、前期固结压力、饱和抗剪强度、不饱和抗剪强度、相对密度等。

获取土体力学指标需要参数的方法:

1、基底沉降:采用沉降板上接双套管,按四等水准测量的标准进行测量。

2、地基孔隙水压力:采用钻孔预埋钢弦式孔隙水压力计并用频率仪测量。

3、地基分层压缩变形:采用预埋分层沉降测管及磁性环,用电磁式沉降仪进行观测。

4、地基侧向位移监测:采用预埋测斜管,用测斜仪进行测量。在处理区外布置侧向位移测孔,同时监测回填石料对海堤的影响。

5、现场十字板及取土试验:采用预埋十字板孔用现场十字板剪切仪进行测试。

6、现场载荷板试验:检测回填后的基础承载力。